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Abstract

Despite the serious public health impact of Crimean-Congo hemorrhagic fever (CCHF), the 

efficacy of antivirals targeting the causative agent, CCHF virus (CCHFV), remains debatable. 

Neutralizing monoclonal antibodies (MAbs) targeting the CCHFV glycoprotein Gc have been 

reported to protect mice against challenge with the prototype CCHFV strain, IbAr10200. However, 

due to extensive sequence diversity of CCHFV glycoproteins, it is unknown whether these MAbs 

neutralize other CCHFV strains. We initially used a CCHF virus-like particle (VLP) system to 

generate 11 VLP moieties, each possessing a glycoprotein from a genetically diverse CCHFV 

strain isolated in either Africa, Asia, the Middle East, or southeastern Europe. We used these VLPs 

in biosafety level 2 conditions to efficiently screen MAb cross-neutralization potency. Of the 16 

MAbs tested, 3 (8A1, 11E7, and 30F7) demonstrated cross-neutralization activity with most 

CCHF VLPs, with 8A1 neutralizing all VLPs tested. Although binding studies suggest that none 

of the MAbs compete for the same epitope, combining 11E7, 30F7, or both 11E7 and 30F7 with 

8A1 had no additive effect on increasing neutralization in this system. To confirm our findings 

from the VLP system, the 3 MAbs capable of strain cross-neutralization were confirmed to 

effectively neutralize 5 diverse CCHFV strains in vitro. Passaging CCHFV strains in the presence 

of sub-neutralizing concentrations of MAbs did not generate escape mutants resistant to 

subsequent neutralization. This study demonstrates the utility of the VLP system for screening 

neutralizing MAbs against multiple CCHFV strains, and provides the first evidence that a single 

MAb can effectively neutralize a number of diverse CCHFV strains in vitro, which may lead to 

development of future CCHF therapeutics.
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1. Introduction

Crimean-Congo hemorrhagic fever virus (CCHFV) is the causative agent of an acute severe 

viral hemorrhagic fever (CCHF) in humans. Geographically, CCHFV or CCHFV reactive 

antibodies have been detected throughout Southern Eurasia and Africa (Bente et al., 2013). 

Case fatality rates of CCHF vary from ~5% to 30% (Bente et al., 2013; Ergonul, 2012; Papa 

et al., 2016). Due to the broad and expanding geographic distribution of Hyalomma ticks, 

the primary vector and reservoir of CCHFV, CCHF outbreaks may increase in frequency and 

spread to new areas (Estrada-Pen~a et al., 2015). Currently, prophylactic and therapeutic 

options available for treating CCHF patients are limited to administration of the antiviral 

drug ribavirin, which has not shown clear clinical benefit in historic meta analyses (Duygu et 

al., 2012; Koksal et al., 2010; Soares-Weiser et al., 2010). Therefore, development of novel 

CCHFV therapeutics is of utmost importance in combating the increasing public health 

burden of CCHF.

In recent years, several groups have shown that polyclonal or monoclonal antibodies 

(MAbs), or combinations of MAbs, can prevent fatal disease when administered to animals 

experimentally infected with hemorrhagic fever viruses (Cross et al., 2016; Qiu et al., 2014; 

Zeitlin et al., 2016). Antibody therapy has been attempted in several instances of human 

CCHF (Kubar et al., 2011; Van Eeden et al., 1985) and has shown modest success in small 

studies, but its efficacy has not been assessed in large or randomized clinical trials. 

Furthermore, mouse studies have suggested an important role for antibodies in protection 

from CCHF (Canakoglu et al., 2015; Dowall et al., 2016). Together, these data suggest that 

antibody treatment may be an effective therapy against CCHFV, but a number of questions 

remain.

Mouse studies have shown that immune responses against the CCHFV glycoproteins 

expressed as the complete glycoprotein precursor, GPC, are important for protection 

(Buttigieg et al., 2014; Hinkula et al., 2017), while immune responses against partial GPC 

subunits delay the time to death (Kortekaas et al., 2015). However, the GPC gene is more 

genetically variable than the other viral proteins such as the nucleocapsid protein (NP) and 

the viral RNA-dependent RNA-polymerase (L); the encoded surface glycoproteins may vary 

by over 25% at the amino acid level among strains co-circulating in the same territory 

(Goedhals et al., 2014; Papa et al., 2014). Thus, GPC may be a more difficult target for the 

immune system or antibody therapy, especially when heterologous strains of the virus are in 

concurrent circulation (Flyak et al., 2016; Wec et al., 2016).

Here, we studied the cross-strain neutralization potential of a panel of previously reported 

MAbs raised against the IbAr10200 prototype CCHFV strain (Bertolotti-Ciarlet et al., 

2005). Potent virus neutralization activity has been reported as essential for several 

successful antibody therapies (Geisbert et al., 2014; Qiu et al., 2014; Wu et al., 2008). We 

assessed here under biosafety level 2 (BSL-2) conditions the ability of MAbs to cross-

neutralize CCHFV strains using the transcription and entry-competent virus-like particle 

(tecVLP) system. tecVLPs consist of viral proteins and a minigenome that together generate 

particles that are morphologically consistent with CCHFV. Therefore, they mimic the viral 

replication cycle and subsequent cell entry and transcription without generating infectious 
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virus. We then confirmed our findings with tecVLPs using CCHFV strains under BSL-4 

conditions.

2. Materials and methods

2.1 Biosafety statement

Procedures involving infectious CCHFV were conducted in a BSL-4 facility according to 

institutionally approved standard operating procedures. Other procedures were performed 

under BSL-2 conditions.

2.2. Cell lines and antibodies

BSR-T7 cells were obtained from K.K. Conzelmann (Ludwig-Maximilians-Universität) and 

propagated in DMEM supplemented with 10% FBS, media additives (1% sodium pyruvate, 

1% non-essential amino acids, and 1% penicillin/streptomycin), and 400 ng/mL gentamycin. 

SW-13 cells were obtained from P. Leyssen (Rega Instituut KU) and propagated in DMEM 

supplemented with 10% FBS and media additives. All cells were grown in a humidified 37 

°C, 5% CO2 incubator.

Murine MAbs targeting CCHFV strain IbAr10200 PreGn (5A5, 6B12, 7F5, 8F10, 10E11, 

11F6, and 13G8), PreGc (1H6, 3E3, 11E7, 12A9, 13G5, and 30F7), and NP (2B11 and 9D5) 

were obtained from the Joel M. Dalrymple-Clarence J. Peters USAMRIID Antibody 

Collection through BEI Resources. Antibodies were purified by protein G affinity 

chromatography to >95% purity (purity range 97.5 – 99.8%) as determined by Experion 

Pro260 analysis. The PreGc MAb 8A1 was produced from hybridoma cells (from G. 

Ludwig, USAMRIID) by GenScript Inc. 8A1 was purified by protein A affinity 

chromatography, and had 95% purity as determined by SDS-PAGE. CCHFV hyperimmune 

mouse ascetic fluid (HMAF) used was the same as previously reported (Bergeron et al., 

2015).

2.3. Viruses and tecVLPs

The ORFs of the GPC of CCHFV isolates ArD15786 (DQ211627), Baghdad-12 

(AJ538197), Kosova Hoti (EU037902), NIV112143 (JN572085), SPU18/88 (KJ682810), 

Sudan Al-Fulah 3–2008 (HQ378185), and YL04057 (FJ562094) were codon-optimized and 

synthesized by GenScript Inc, and cloned into the previously described expression vector 

pCAGGS (pC-GPC). Including the previously described IbAr10200, Oman199809166, 

Turkey200406546, and Afg09 tecVLPs, 11 tecVLP moieties were generated (Fig. 1) (Zivcec 

et al., 2015).

The previously described CCHFV helper plasmids encoding the strain IbAr10200 NP (pC-

NP), the codon-optimized L (pCLCK-L, possessing an R substitution at position 16) helper 

plasmids, and the pL-Luc minigenome plasmids were used in all experiments. BSR-T7 cells 

were transfected with pC-NP, pCLCK-L, pL-Luc, and a pC-GPC plasmid using TransIT-LT1 

Transfection Reagent according to manufacturer’s recommendations (Mirus Bio LLC). 

Media were replaced with fresh culture medium the following day, and tecVLP-containing 
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cell supernatants were collected and concentrated as previously described (Zivcec et al., 

2015).

CCHFV isolates Turkey-812955 (KY362515, KY362517, and KY362519), Oman-812956 

(KY362514, KY362516, and KY362518), UAE-813040 (MF289414, MF289415, and 

MF289416), and UAE-813042 (MF289417, MF289418, and MF289419) were propagated in 

SW-13 cells. CCHFV strain IbAr10200 was generated by reverse genetic approaches as 

previously described, and propagated in SW-13 cells (recIbAr10200) (Bergeron et al., 2015). 

CCHFV identity and sequence, and exclusion of contaminants in the virus stocks, were 

confirmed by next-generation sequencing using a MiniSeq System according to 

manufacturer’s instructions (Illumina, Inc).

2.4. CCHFV and tecVLP neutralization assay

tecVLP neutralization assays were conducted as previously described (Zivcec et al., 2015). 

For the CCHFV plaque reduction/ neutralization test (PRNT), MAbs were diluted in SW-13 

media to equal starting concentrations (10 αg/mL), and further diluted in a 2-fold dilution 

series (concentration range 101 to 8 10−2 αg/mL, or ~1:100- to 1:12800-fold dilutions). 

MAb dilutions were mixed with equal volumes of CCHFV isolates diluted to ~100 TCID50/

well in SW-13 media, and incubated for 1 h at 37 °C. The mixture was then applied to 

confluent monolayers of SW-13 cells in 6-well plates and incubated for 1 h at 37 ○C. 

Following incubation, the inocula were removed, and the cells were washed with DMEM, 

overlaid with 1–1.2% Avicel (FMC Health and Nutrition), and incubated at 37 °C for 3 – 4 

days. The overlays were removed, fixed with formalin, and stained with crystal violet. 

Plaques were counted visually, and reductions in the number of plaques were reported as the 

titer reduction percentage.

2.5. Serial passaging of CCHFV in the presence of neutralizing MAb

CCHFV strains recIbAr10200 and Turkey-812955 were passaged in the presence of sub-

neutralizing doses of 8A1 (0.625 or 0.3125 αg/mL) or 30F7 (1.25 or 0.625 αg/mL), or in 

SW-13 media. Both strains were incubated with MAbs and used to infect SW-13 cells in 6-

well plates as described in 2.4. Following infection, the inocula were replaced with their 

respective MAb-containing or plain SW-13 media and incubated for 2 days at 37 °C. 

Following incubation, supernatants were aliquoted and frozen at 80 ○C. CCHFV RNA 

levels were monitored by quantitative RT-PCR assays as previously described (Bergeron et 

al., 2015; Spengler et al., 2017). Five CCHFV passages were performed; efforts to passage 

the virus for longer than 5 passages in the presence of sub-neutralizing level of MAbs all 

resulted in reduction of CCHFV RNA to undetectable levels. Changes in GPC sequences 

were determined by next-generation sequencing. Briefly, the GPC region of Turkey-812955 

and recIbAr10200 was amplified from the extracted RNA using the SuperScript® III One-

Step RT-PCR System with Platinum Taq DNA Polymerase (Thermo Scientific) 

(Supplemental Table 1). GPC DNA fragments were purified and sequenced using a MiniSeq 

System according to manufacturer’s instructions (Illumina, Inc).
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2.6. CCHFV competitive ELISA

Horseradish peroxidase (HRP) was conjugated to MAbs 8A1 and 11E7 using the HRP 

Conjugation Kit (Abcam Plc) to create 8A1-HRP and 11E7-HRP. HRP did not effectively 

conjugate to MAb 30F7 or diminished 30F7’s binding to its substrate, so the binding of this 

MAb could not be assessed. 96-well ELISA plates were coated with monoclonal antibodies 

12A9 and 13G5 (1:1000 dilution in PBS) overnight at 4 °C. Plates were washed with 0.1% 

Tween-20 PBS. Slurries of BSR-T7 cells transfected with IbAr10200 tecVLP or mock-

transfected were diluted 1:20 in SuperBlock blocking buffer (SB, Thermo Scientific) with 

0.5% Tween-20 and 0.5% Triton X-100 (Sigma-Aldrich), added to the coated wells, and 

incubated at 37 °C for 1–2 h. ELISA plates were washed at least 3 times and incubated with 

MAbs (8A1, 11E7, 30F7, or 9D5 [negative control]; 1 αg/mL in SB-0.1% Tween-20) for 1–

2 h at 37 °C. The plates were washed and incubated with 1 αg/mL 8A1-HRP or 11E7-HRP 

for 1–2 h at 37 °C. HRP signal was developed using the ABTS 2-Component Microwell 

Peroxidase Substrate kit (SeraCare Life Sciences). Competition was determined as the 

percentage of signal of a conjugated MAb (8A1-HRP or 11E7-HRP) following incubation 

with a competing MAb (8A1, 11E7, or 30F7) compared to control MAb (9D5).

2.7. MAb peptide screening

MAbs 1H6, 3E3, 8A1, 11E7, 12A9, 13G5, and 30F7, and purified HMAF (positive control) 

were sent to JPT Peptide Technologies GmbH for seromarker discovery. Briefly, peptides 

(15 aa linear epitopes with 11 aa overlap) of the entire Gc region of CCHFV IbAr10200 

were synthesized (Supplementary Table 2) and chemoselectively immobilized onto 

microarrays via N-terminus using a tag. MAb binding to these peptides was determined by a 

peptide ELISA. Data were normalized to the control slide and reported as fold increase over 

signal generated by normal purified mouse IgG:

Fold increase =
MAb peptide signal

control signal
IgG peptide signal

control signal
.

2.8. Statistical analyses

One- or Two-way analyses of variance (ANOVA) with Dunnett’s or Sidak’s multiple 

comparisons tests were performed using GraphPad Prism version 6.0d for Mac OS X 

(GraphPad Software, Inc). For MAb inhibitory dilutions, GraphPad Prism was used to fita 4-

parameter equation to semilog plots of the concentration-response data. The plot was used to 

interpolate the concentration of MAb that inhibited 50% of the NanoLuc signal or resulted 

in 50% reduction in plaque counts in target cells (EC50).

3. Results

3.1. 8A1, 11E7, and 30F7 broadly cross-neutralize CCHF tecVLPs

To expand the tecVLP panel across additional CCHFV GPC clades (Fig. 1), we generated 7 

more tecVLP moieties possessing glycoproteins from diverse CCHFV strains, and tested the 

collection of 11 tecVLP moieties against a panel of 16 MAbs targeting CCHFV NP 
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(negative control) or the mature glycoproteins Gn and Gc. The GPCs were selected to have 

approximately 2 strains from each of the 6 GPC clades represented, including both recently 

circulating and historical strains. Luciferase signal measured in target cells incubated with 

neutralized tecVLP mixtures was compared to luciferase signal of tecVLPs neutralized by 

the negative control. When diluted to 5 αg/mL, MAbs targeting NP or the PreGn region of 

GPC did not neutralize tecVLP signal appreciably, while most MAbs targeting the PreGc 

region neutralized one or more tecVLP moieties (Fig. 2). Of the 7 PreGc-targeting MAbs, 

8A1, 11E7, and 30F7 cross-neutralized >50% of the signal in at least 6 of the 11 tecVLPs 

tested, and were therefore selected for additional characterization of dosing and 

combinations. No evidence of cell toxicity was observed following treatment with any 

tecVLP or MAb (data not shown).

3.2. 8A1 is the most potent and most broadly cross-neutralizing MAb

While 8A1, 11E7, and 30F7 all neutralized the IbAr10200 VLP signal at ≤1 αg/mL (with 

EC50 values of 0.046, 0.499, and 0.777 mg/ mL, respectively), the EC50 values of these 

MAbs for neutralizing other tecVLP moieties varied significantly (Table 1, Supplemental 

Fig. 1). 8A1 consistently neutralized the signal of every tecVLP moiety more strongly and at 

lower concentrations than either 11E7 or 30F7. 8A1 neutralized 87.9 ± 0.4% to 99.7 ± 0.0% 

of tecVLP signals at EC50 values of 2 αg/mL (Table 1, Supplemental Fig. 1A). In our 

experiments, 30F7 could neutralize most tecVLPs at a lower concentration and higher 

maximal inhibition percentage than 11E7 (Supplemental Fig. 1B and C), and 11E7 generally 

performed the most poorly of the 3 cross-neutralizing MAbs (Supplemental Fig. 1C).

3.3. 11E7 and/or 30F7 do not enhance 8A1 neutralizing potency

Combining any 2 of 8A1, 11E7, and 30F7 did not significantly affect EC50 values or 

maximal inhibition of tecVLP signal; indeed, the 8A1/11E7 combination may have had 

lower neutralization potency than 8A1 alone (Table 2, Supplemental Fig. 2). Combining all 

3 MAbs also did not enhance the neutralizing potency or maximal inhibition of 8A1 alone.

3.4. 8A1, 11E7, and 30F7 do not block binding of heterologous MAbs

To determine whether cross-neutralizing MAbs compete for binding, we conjugated HRP to 

MAb and performed a competition ELISA (Fig. 3). MAb 30F7 did not successfully couple 

with HRP, but did not interfere with 8A1 and 11E7 binding (data not shown). Adding 8A1 

did not inhibit 11E7-HRP signal, nor did adding 11E7 inhibit 8A1-HRP signal. However, 

using 8A1 together with 8A1-HRP, and 11E7 with 11E7-HRP resulted in maximal HRP 

signal reduction of ~25% compared to the negative control.

3.5. Peptide scan ELISA shows weak binding of anti-Gc antibodies

To assess peptide binding in Gc-targeting MAbs, we performed a peptide scan-based 

ELISA. Ultimately, all MAbs gave low binding signal indicative of low reactivity with linear 

peptides. In the assay, of all the cross-neutralizing MAbs, 11E7 reacted most strongly and 

had highest reactivity to peptides 77 (55.2-fold increase; NTSWMSWDGCDLDYY1359), 58 

(34.7-fold increase; NIQQKLP-PEIITLHP1283), and 87 (33.7-fold increase; 

LNIETDYTKNFHFHS1399) (Supplemental Table 2). Of the 3 cross-neutralizing MAbs, 8A1 
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had intermediate reactivity to peptides and reacted to peptides 149 (20.6-fold increase; 

FKYRHLKDDEETGYR1647), 44 (20.5-fold increase; KDLFTDYMFVKWKVE1227), and 

76 (19.5-fold increase; EPHFNTSWMSWDGCD1355). 30F7 had the weakest interaction of 

the cross-neutralizing MAbs, and most strongly interacted with peptides 48 (15.2-fold; 

IKTEAIVCVELTSQE1243), 44 (11.1-fold; KDLFTDYMFVKWKVE1227), and 5 (9.7-fold; 

SLETSLSIEAPWGAI1071). HMAF, which was previously shown to bind linear Gc epitopes 

(Erickson et al., 2007), was used as positive control, and bound to Gc peptides more potently 

than any of the MAbs (up to 613.7-fold).

3.6. tecVLP assays effectively predict the neutralizing potency of MAbs against CCHFV 
strains

To confirm that the neutralization potency of MAbs against tecVLPs reflected their 

neutralizing potency against infectious CCHFV strains (Fig. 1), we used the MAbs in a 

PRNT assay. In line with the tecVLP data, 8A1 was able to neutralize all the CCHFV strains 

used, and demonstrated significantly higher neutralization potency, both in terms of its 50% 

PRNT (PRNT50) dose and the maximal inhibition, than 11E7 or 30F7 for all CCHFV strains 

tested (Table 3, Supplemental Fig. 3). In contrast to the tecVLP data, however, 11E7 

neutralized all strains by >50%, with <1 αg/mL PRNT50 values against all strains, which 

were not statistically different from those of 30F7. However, similarly to the tecVLP data, 

30F7 showed higher maximal neutralization than 11E7.

3.7. No escape CCHFV mutants were detected after growing the virus in the presence of 
MAbs

To examine the likelihood of developing escape mutations in response to MAb 

neutralization, strains recIbAr10200 and Turkey-812955 were passaged in the presence 8A1 

or 30F7 (using a dose of ~EC90 and ~EC85, respectively). In each passage, CCHFV RNA 

levels were monitored by qRT-PCR (data not shown). However, by passage 4, cell 

supernatants contained no detectable CCHFV RNA. Thus we halved the amount of MAbs 

used in order to continue the study for passages 4 and 5 (a dose of ~1 EC70 of both 8A1 and 

30F7). During passages 4 and 5, the amount of CCHFV RNA increased steadily, so at 

passage 6, starting MAb concentrations were again used. This resulted in the disappearance 

of CCHFV RNA in 3 separate attempts to propagate the virus past passage 6. Next-

generation sequencing of the CCHFV GPC Gc region of the strains at passage 5 did not 

show any consensus sequence changes or sub-stantial changes in polymorphism frequency 

compared to mock-treated viruses (Supplemental Table 3).

4. Discussion

Over the past 2 decades, the range of CCHFV circulation and the total number of identified 

CCHF cases have steadily increased (Bente et al., 2013; Ergonul, 2012). This increase has 

been accompanied by reports of multiple strains co-circulating within a geographic region, 

highlighting the need to develop molecular diagnostics and therapeutics that target multiple 

CCHFV strains (Gargili et al., 2011; Goedhals et al., 2014; Papa et al., 2014). MAbs have 

demonstrated protective efficacy and safety in other animal viral disease models and in 
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patients; however, MAb effects are usually specific against an individual virus or specific 

strain (Flyak et al., 2016; Wec et al., 2016).

Using tecVLPs in BSL-2, we identified 3 Gc-targeting MAbs that neutralized the luciferase 

signal of multiple tecVLP moieties. The 3 MAbs were also able to neutralize wild-type 

CCHFV strains in BSL-4 at even lower effective concentrations, and to neutralize strains 

absent from the tecVLP panel, showing that the tecVLP system is highly predictive for 

screening neutralizing MAbs (Tables 1 and 3). The increased EC50 values compared to 

PRNT50 values observed are likely due to the concentration of tecVLP versus CCHFV used. 

The total number of infectious units used was relatively low (~100 TCID50/well) while the 

total amount of tecVLP used was higher (~104 units/well) to obtain a broader dynamic 

range. In addition, followin transfection of cells by GPC plasmids, glycoproteins are 

secreted into the supernatant (data not shown) and may have interfered with antibody 

neutralization. This interference is likely to have had the greatest impact on 11E7 as a 

weaker neutralizing MAb compared to other MAbs. As 8A1 neutralized all tested CCHFV 

strains and tecVLPs moieties, it likely targets a conserved epitope essential for viral entry. 

8A1 did not bind strongly to any Gc linear peptides, and the identified peptide binding 

regions were not highly conserved between the tecVLP moieties or CCHFV strains (data not 

shown), indicating that this MAb likely detects conformational epitopes. 30F7 and 11E7 also 

bound linear epitopes weakly, but showed lower neutralizing potency against CCHFV 

strains. In contrast to neutralizing MAbs, polyclonal purified HMAF, which was developed 

following infection of wild-type mice with CCHFV and contains antibodies directed against 

both linear and conformational epitopes of CCHFV NP and glycoproteins (Erickson et al., 

2007), strongly bound to linear epitopes throughout the middle and C-terminal end of Gc 

(Supplemental Table 2). As we were unable to definitively determine that the MAbs bound 

linear peptides, we conclude that their neutralizing potency does not correlate to recognition 

of linear epitopes.

Despite several attempts to generate escape mutants to antibodies 8A1 and 30F7, we could 

not produce a virus that was phenotypically different from the parent strain or resistant to 

MAb neutralization. After 5 passages in the presence of either MAb, both CCHFV strains 

recIbAr10200 and Turkey-812955 remained susceptible to neutralization. Furthermore, next-

generation sequencing did not reveal large differences in Gc consensus sequences or 

frequency of polymorphisms in virus from the final passage (Supplemental Table 3). These 

data suggest that these MAbs target conserved Gc regions that are resistant to mutations.

Individually 8A1, 11E7, and 30F7 have shown partial protection following lethal strain 

IbAr10200 CCHFV infection in the suckling mouse model (Bertolotti-Ciarlet et al., 2005). 

Multiple animal disease models, including those for Ebola, Lassa, and Chikungunya viruses, 

have shown that MAb cocktails ( 2) are frequently required for robust protective effects 

following infection. Use of redundant MAbs in cocktail therapies can often prevent the 

emergence of viable escape mutants, increase the treatment time frame, and engage 

additional methods of adaptive immunity (e.g., antibody-dependent cell cytotoxicity) (Cross 

et al., 2016; Pal et al., 2013; Qiu et al., 2012). While 8A1, 11E7, and 30F7 varied in 

neutralizing potencies against different CCHFV strains and tecVLPs, they did not interfere 

with each other’s binding or neutralization potency (Table 2), and 8A1 and 30F7 treatment 
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did not give rise to viable escape mutants. Together, these MAbs may act more potently than 

single MAbs, against a number of current CCHFV strains and possibly newly emerging 

ones.

In conclusion, we have screened a panel of murine MAbs at BSL-2 and BSL-4 for their 

ability to neutralize multiple CCHFV strains. Our data highlight the utility of the tecVLP 

system in both low- and medium-throughput (6- to 96-well) screening. We identified 3 

cross-neutralizing MAbs that effectively neutralize tecVLPs and CCHFV strains with high 

potency. MAb 8A1 was identified as highest in neutralizing potency and broadest cross-

neutralizing ability. The MAbs do not compete for the same Gc epitopes but are not 

synergistic. Our studies lay the groundwork for testing a rational selection of MAb-based 

therapies in murine CCHFV disease models, and further confirm the Gc region of CCHFV 

as a conserved therapeutic target.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Phylogenetic analysis of amino acid sequences of Crimean-Congo hemorrhagic fever virus 

(CCHFV) glycoprotein precursors. Maximum likelihood analysis was used to compare 

complete amino acid sequences of the glycoprotein precursor proteins from the indicated 

CCHFV strains. Accession numbers are listed and bootstrap support values are indicated at 

the nodes. Highlighted in blue are strains that were sequenced during the course of these 

experiments (813040 UAE and 813042 UAE) and only used as infectious CCHFV. 

Highlighted in red are sequences obtained from GenBank that were used to generate 
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transcription and entry competent virus-like particles (tecVLPs). Purple frames outline 

sequences used as both tecVLPs and infectious CCHFV strains.
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Fig. 2. 
Assessing cross-neutralizing activity of monoclonal antibodies (MAbs) against CCHFV 

tecVLPs. tecVLPs possessing glycoproteins from strains IbAr10200, Sudan Al-Fulah 2009–

03, Turkey 200406546, Kosova Hoti, Oman199809166, SPU18/88, ArD15786, YL04057, 

Afg09, NIV112143, and Baghdad-12 were incubated with MAbs diluted to a final 

concentration of 5 αg/mL. Percent inhibition was calculated by comparing the luciferase 

signal to that of tecVLPs incubated with the monoclonal 9D5, which targets the CCHFV 
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nucleoprotein and does not neutralize viral entry. Data are shown as standard error of the a 

mean (n = 4).
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Fig. 3. 
Competition ELISA of cross-neutralizing MAbs. Monoclonal antibodies 8A1, 11E7, or 9D5 

(negative control; this antibody targets the nucleoprotein) were used at a final concentration 

of 1 αg/mL to block the attachment of horseradish peroxidase (HRP)-conjugated 8A1 or 

11E7 (1 αg/mL concentration). Percent HRP signal was calculated by comparing to HRP 

signal of samples with 9D5. Data were analyzed by one-way ANOVA, compared to mock 

signal using Dunnett’s multiple comparison test and are shown as standard error of the a 

mean (n = 8). * = p < 0.05, ***p < 0.01.
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